INDIAN SCHOOL MUSCAT CLASS 12 CHEMISTRY COORDINATION COMPOUNDS

- 1 A chelating agent has two or more than two donor atoms to bind to a single metal ion. Which of the following is not a chelating agent?
 - a) Thiosulphato
 - b) Oxalato
 - c) Glycinato
 - d) Ethane-1,2-diamine
- 2 IUPAC name of [Pt(NH₃)₂Cl(NO₂)] is
 - a) Platinum diamminechloronitrite
 - b) Chloronitrito-N-ammineplatinum (II)
 - c) Diamminechloridonitrito-N-platinum (II)
 - d) Diamminechloronitrito-N-plantinate (II)
- 3 In the complex $[M(en)_2(C_2O_4)]^-$, the coordination number and the oxidation state of the element 'M' respectively are
 - a) 6 and 2
 - b) 2 and 2
 - c) 4 and 3
 - d) 6 and 3
- 4 Some salts containing two different metallic elements give test for only one of them in solution, such salts are
 - a) double salts
 - b) normal salts
 - c) complex salts
 - d) None of these
- 5 On the basis of Crystal Field Theory, how many unpaired electrons are there in a strong field iron(II) octahedral complex?
 - a) 0
 - b) 1
 - c) 2
 - d) 4
 - e) 6
- 6 Strong field ligands such as CN⁻ usually produce
 - a) high spin complexes and small crystal field splitting.
 - b) low spin complexes and small crystal field splitting.
 - c) low spin complexes and high crystal field splitting.
 - d) high spin complexes and high crystal field splitting.

- 7 Among the ligands NH₃, en, CN^- and CO, the correct order of field strength is (a) NH₃ < en < CN^- < CO (b) CN^- < NH₃ < CO < en (c) en < CN^- < NH₃ < CO (d) CO < NH₃ < en < CN^-
- 8 The solution of the complex $[Cu(NH_3)_4]$ SO₄ in water will
 - (a) give the tests of Cu^{2+} ion
 - (b) give the tests of NH₃
 - (c) give the tests of SO_4^{2-} ions
 - (d) not give the tests of any of the above
- 9 A complex compound in which the oxidation number of a metal is zero is
 - a) K₄ [Fe (CN)₆]
 - b) K₃ [Fe (CN)₆]
 - c) [Ni (CO)₄]
 - d) [Pl (NH₃)₄]Cl₂
- 10 Which has maximum paramagnetic character?
 - a) $[Fe(CN)_6]^{4-}$
 - b) $[Cu(H_2O)_4]^{2+}$
 - c) $[Cu(NH_3)_4]^{2+}$
 - d) $[Mn (H_2O)_6]^{2+}$
- 11 Lanthanoid contraction is caused due to
 - (a) the same effective nuclear charge from Ce to Lu
 - (b) the imperfect shielding on outer electrons by 4f electrons from the nuclear charge
 - (c) the appreciable shielding on outer electrons by 4 f electrons from the nuclear charge
 - (d) the appreciable shielding on outer electrons by 5 d electrons from the nuclear charge
- 12 When 1 mol CrCl₃·6H₂O is treated with excess of AgNO₃, 3 mol of AgCl are obtained. The formula of the complex is :
 - a) $[CrCl_3(H_2O)_3] \cdot 3H_2O$
 - b) $[CrCl_2(H_2O)_4]Cl\cdot 2H_2O$
 - c) $[CrCl(H_2O)_5]Cl_2 \cdot H_2O$
 - d) $[Cr(H_2O)_6]Cl_3$
- 13 Taking H₂O as a weak field ligand, the number of unpaired electrons in $[Mn(H_2O)_6]^{2+}$ will be _____. (Atomic No. of Mn = 25)
 - a) 3
 - b) 4
 - c) 2
 - d) 5

14 The formula for tris(ethane-1,2-diamine)cobalt (III) ion is

a) $[Co(en)_2]^{3+}$

- b) $[Co(en)_3]^{3+}$
- c) $[Co_3(en)]^{3+}$
- d) $[Co_3(en)_3]^{3+}$
- 15 If the ligand happens to be multidentate and cyclic without steric effects, then the stability of the complex is _____.
 - a) is increased
 - b) is decreased
 - c) remains the same
 - d) doesn't have any effect

FILL IN THE BLANKS

- 1) The _____ is enclosed in brackets in formulas for complex species, and it includes the central metal ion plus the coordinated groups.
- 2) The oxidation number of the central metal atom in the coordination compound [Pt(NH₃)₃Cl]Cl is _____
- 3) If $\Delta_0 > P$ for d⁴, electronic configuration in terms of CFT is ______.
- 4) _____example of bidentate ligand
- 5) Hybridisation of Ni in [Ni(CN)₄]²— is _____

MATCH THE FOLLOWING:

Ι

Column I	Column II
(Complex ion)	(Hybridisation, number of unpaired electrons)
(A) $[Cr(H_2O)_6]^{3+}$	$(1) dsp^2, 1$
(B) $[Co(CN_4)]^{2-}$	(2) sp^3d^2 , 5
$(C) [Ni(NH_3)_6]^{2+}$	$(3) d^2 s p^3, 5$
(D) $[MnF_6]^{4-}$	$(4) sp^3, 4$
	$(5) \text{ sp}^3 \text{d}^2, 2$

Π

Column I	Column II	
FORMULA	NAME	
A. [Ni(CO)4]	1. tetraammineaquaiodocobalt(III) sulfate	
B. $[Mn(CN)_5]^{2-}$	2. potassium	
	diamminetetrachlorochromate(III)	
C. $K[Cr(NH_3)_2Cl_4]$	3. pentacyanomanganate(II) ion	
D. $[Co(NH_3)_4(OH)_2I]SO_4$	4. tetracarbonylnickel(0)	

III	Column I	Column II
	(a) [Ni(CO) ₄]	1. Ambidendate ligand
	(b) CN ⁻	2. Double salt
	(c) $K[Cr(NH_3)_2Cl_4]$	3. Homoleptic complexes
	(d)FeSO ₄ .(NH ₄) ₂ SO ₄ .6H ₂ O	4. Heteroleptic complexes

ASSERTION REASONING TYPE QUESTIONS-

- Assertion. The complex (Co(NH₃)₃C1₃] does not give precipitate with AgNO₃.
 Reason. The given complex does not contain any ionisable valency.
- Assertion. Both [Ni(CN)4]²⁻ and [NiC14]²⁻ have same shape and same magnetic behaviour.
 Reason. Both are square planar and diamagnetic.
- 3 Assertion. The number of unpaired electrons present in $[Cu(NH_3)_4]^{+2}$ complex is zero. Reason. The complex is square planar with dsp²-hybridization.